Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 273: 116079, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377778

RESUMEN

Nicotine, an addictive component of cigarettes, causes cognitive defects, particularly when exposure occurs early in life. However, the exact mechanism through which nicotine causes toxicity and alters synaptic plasticity is still not fully understood. The aim of the current study is to examine how non-coding developmental regulatory RNA impacts the hippocampus of mice offspring whose mothers were exposed to nicotine. Female C57BL/6J mice were given nicotine water from one week before pregnancy until end of lactation. Hippocampal tissue from offspring at 20 days post-birth was used for LncRNA and mRNA microarray analysis. Differential expression of LncRNAs and mRNAs associated with neuronal development were screened and validated, and the CeRNA pathway mediating neuronal synaptic plasticity GM13530/miR-7119-3p/mef2c was predicted using LncBase Predicted v.2. Using protein immunoblotting, Golgi staining and behavioral tests, our findings revealed that nicotine exposure in offspring mice increased hippocampal NMDAR receptor, activated receptor-dependent calcium channels, enhanced the formation of NMDAR/nNOS/PSD95 ternary complexes, increased NO synthesis, mediated p38 activation, induced neuronal excitability toxicity. Furthermore, an epigenetic CeRNA regulatory mechanism was identified, which suppresses Mef2c-mediated synaptic plasticity and leads to modifications in the learning and social behavior of the offspring during adolescence. This study uncovers the way in which maternal nicotine exposure results in neurotoxicity in offspring.


Asunto(s)
Nicotina , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Ratones , Animales , Femenino , Nicotina/toxicidad , Nicotina/metabolismo , ARN Endógeno Competitivo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratones Endogámicos C57BL , Exposición Materna/efectos adversos , Hipocampo/metabolismo
2.
Ecotoxicol Environ Saf ; 271: 115972, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218105

RESUMEN

Coal worker's pneumoconiosis (CWP) is a common occupational disease that coal miners are highly susceptible due to long-term exposure to coal dust particles (CDP). CWP can induce the accumulation of immune cells surrounding the bronchioles and alveoli in the lungs, resulting in pulmonary fibrosis and compromised immune function. Using single-cell RNA sequencing (scRNA-Seq), our previous studies disclose that CDP exposure triggers heterogeneity of transcriptional profiles in mouse pneumoconiosis, while Vitamin D3 (VitD3) supplementation reduces CDP-induced cytotoxicity; however, the mechanism by which how VitD3 regulates immune status in coal pneumoconiosis remains unclear. In this study, we elucidated the heterogeneity of pulmonary lymphocytes in mice exposed to CDP and demonstrated the therapeutic efficacy of VitD3 using scRNA-Seq dataset. The validation of key lymphocyte markers and their functional molecules was performed using immunofluorescence. The results demonstrated that VitD3 increased the number of naive T cells by modulating CD4 + T cell differentiation and decreased the number of Treg cells in CDP-exposed mice, thereby enhancing the cytotoxic activity of CD8 + effector T cells. These effects markedly alleviated lung fibrosis and symptoms. Taken together, the mechanism by which VitD3 regulates the functions of lymphocytes in CWP provides a new perspective for further research on the prevention and treatment of CWP.


Asunto(s)
Antracosis , Minas de Carbón , Neumoconiosis , Fibrosis Pulmonar , Animales , Ratones , Neumoconiosis/diagnóstico , Fibrosis Pulmonar/inducido químicamente , Carbón Mineral , Tolerancia Inmunológica
3.
CNS Neurosci Ther ; 30(4): e14508, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37864452

RESUMEN

AIMS: Exposure to crystalline silica (CS) in occupational settings induces chronic inflammation in the respiratory system and, potentially, the brain. Some workers are frequently concurrently exposed to both CS and nicotine. Here, we explored the impact of nicotine on CS-induced neuroinflammation in the mouse hippocampus. METHODS: In this study, we established double-exposed models of CS and nicotine in C57BL/6 mice. To assess depression-like behavior, experiments were conducted at 3, 6, and 9 weeks. Serum inflammatory factors were analyzed by ELISA. Hippocampus was collected for RNA sequencing analysis and examining the gene expression patterns linked to inflammation and cell death. Microglia and astrocyte activation and hippocampal neuronal death were assessed using immunohistochemistry and immunofluorescence staining. Western blotting was used to analyze the NF-κB expression level. RESULTS: Mice exposed to CS for 3 weeks showed signs of depression. This was accompanied by elevated IL-6 in blood, destruction of the blood-brain barrier, and activation of astrocytes caused by an increased NF-κB expression in the CA1 area of the hippocampus. The elevated levels of astrocyte-derived Lcn2 and upregulated genes related to inflammation led to higher neuronal mortality. Moreover, nicotine mitigated the NF-κB expression, astrocyte activation, and neuronal death, thereby ameliorating the associated symptoms. CONCLUSION: Silica exposure induces neuroinflammation and neuronal death in the mouse hippocampal CA1 region and depressive behavior. However, nicotine inhibits CS-induced neuroinflammation and neuronal apoptosis, alleviating depressive-like behaviors in mice.


Asunto(s)
FN-kappa B , Nicotina , Ratones , Animales , FN-kappa B/metabolismo , Nicotina/farmacología , Nicotina/metabolismo , Astrocitos/metabolismo , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Región CA1 Hipocampal/metabolismo , Inflamación/metabolismo , Apoptosis , Microglía/metabolismo
4.
Food Chem Toxicol ; 175: 113694, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36868510

RESUMEN

The addictive substance nicotine, found in cigarettes and some e-cigarettes, plays a vital role in pro-inflammatory and fibrotic processes. However, the part played by nicotine in the progression of silica-induced pulmonary fibrosis is poorly understood. We used mice exposed to both silica and nicotine to investigate whether nicotine synergizes with silica particles to worsen lung fibrosis. The results revealed that nicotine accelerated the development of pulmonary fibrosis in silica-injured mice by activating STAT3-BDNF-TrkB signalling. Mice with a history of exposure to nicotine showed an increase in Fgf7 expression and alveolar type II cell proliferation if they were also exposed to silica. However, newborn AT2 cells could not regenerate the alveolar structure and release pro-fibrotic factor IL-33. Moreover, activated TrkB induced the expression of p-AKT, which promotes the expression of epithelial-mesenchymal transcription factor Twist, but no Snail. In vitro assessment confirmed activation of the STAT3-BDNF-TrkB pathway in AT2 cells, exposed to nicotine plus silica. In addition, TrkB inhibitor K252a downregulated p-TrkB and the downstream p-AKT and restricted the epithelial-mesenchymal transition caused by nicotine plus silica. In conclusion, nicotine activates the STAT3-BDNF-TrkB pathway, which promotes epithelial-mesenchymal transition and exacerbates pulmonary fibrosis in mice with combined exposure to silica particles and nicotine.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Dióxido de Silicio/toxicidad , Nicotina/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transición Epitelial-Mesenquimal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibrosis
5.
J Vis Exp ; (193)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36939260

RESUMEN

Smoking and exposure to silica are common among occupational workers, and silica is more likely to injure the lungs of smokers than non-smokers. The role of nicotine, the primary addictive ingredient in cigarettes, in silicosis development is unclear. The mouse model employed in this study was simple and easily controlled, and it effectively simulated the effects of chronic nicotine ingestion and repeated exposure to silica on lung fibrosis through epithelial-mesenchymal transition in human beings. In addition, this model can help in the direct study of the effects of nicotine on silicosis while avoiding the effects of other components in cigarette smoke. After environmental adaptation, mice were injected subcutaneously with 0.25 mg/kg nicotine solution into the loose skin over the neck every morning and evening at 12 h intervals over 40 days. Additionally, crystalline silica powder (1-5 µm) was suspended in normal saline, diluted to a suspension of 20 mg/mL, and dispersed evenly using an ultrasonic water bath. The isoflurane-anesthetized mice inhaled 50 µL of this silica dust suspension through the nose and were awoken via chest massage. Silica exposure was administrated daily on days 5-19. The double-exposed mouse model was exposed to nicotine and then silica, which matches the exposure history of workers who are exposed to both harmful factors. In addition, nicotine promoted pulmonary fibrosis through epithelial-mesenchymal transformation (EMT) in mice. This animal model can be used to study the effects of multiple factors on the development of silicosis.


Asunto(s)
Fibrosis Pulmonar , Silicosis , Humanos , Ratones , Animales , Dióxido de Silicio , Nicotina/efectos adversos , Transición Epitelial-Mesenquimal , Pulmón/patología , Silicosis/etiología , Silicosis/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Modelos Animales de Enfermedad
6.
J Vis Exp ; (191)2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688556

RESUMEN

Silicosis can be caused by exposure to respiratory crystalline silica dust (CSD) in an industrial environment. The pathophysiology, screening, and treatment of silicosis in humans have all been extensively studied using the mouse silicosis model. By repeatedly making mice inhale CSD into their lungs, the mice can mimic the clinical symptoms of human silicosis. This methodology is practical and efficient in terms of time and output and does not cause mechanical injury to the upper respiratory tract due to surgery. Furthermore, this model can successfully mimic acute/chronic transformation process of silicosis. The main procedures were as follows. The sterilized 1-5 µm CSD powder was fully ground, suspended in saline, and dispersed in an ultrasonic water bath for 30 min. Mice under isoflurane-induced anesthesia switched from shallow rapid breathing to deep, slow aspiration for approximately 2 s. The mouse was placed in the palm of a hand, and the thumb tip gently touched the lip edge of the mouse's jaw to straighten the airway. After each exhalation, the mice breathed in the silica suspension drop by drop through one nostril, completing the process within 4-8 s. After the mice's breathing had stabilized, their chest was stroked and caressed to prevent the inhaled CSD from being coughed up. The mice were then returned to the cage. In conclusion, this model can quantify CSD along the typical physiological passage of tiny particles into the lung, from the upper respiratory tract to the terminal bronchioles and alveoli. It can also replicate the recurrent exposure of employees due to work. The model can be performed by one person and does not need expensive equipment. It conveniently and effectively simulates the disease features of human silicosis with high repeatability.


Asunto(s)
Silicosis , Humanos , Ratones , Animales , Silicosis/etiología , Pulmón , Dióxido de Silicio , Alveolos Pulmonares , Polvo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...